Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 6407, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828005

RESUMEN

Extreme fast charging of Ampere-hour (Ah)-scale electrochemical energy storage devices targeting charging times of less than 10 minutes are desired to increase widespread adoption. However, this metric is difficult to achieve in conventional Li-ion batteries due to their inherent reaction mechanism and safety hazards at high current densities. In this work, we report 1 Ah soft-package potassium-ion hybrid supercapacitors (PIHCs), which combine the merits of high-energy density of battery-type negative electrodes and high-power density of capacitor-type positive electrodes. The PIHC consists of a defect-rich, high specific surface area N-doped carbon nanotube-based positive electrode, MnO quantum dots inlaid spacing-expanded carbon nanotube-based negative electrode, carbonate-based non-aqueous electrolyte, and a binder- and current collector-free cell design. Through the optimization of the cell configuration, electrodes, and electrolyte, the full cells (1 Ah) exhibit a cell voltage up to 4.8 V, high full-cell level specific energy of 140 Wh kg-1 (based on the whole mass of device) with a full charge of 6 minutes. An 88% capacity retention after 200 cycles at 10 C (10 A) and a voltage retention of 99% at 25 ± 1 °C are also demonstrated.

4.
ACS Catal ; 13(2): 1349-1358, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36714053

RESUMEN

The rational construction of efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) is critical to seawater electrolysis. Herein, trimetallic heterostructured core-shell nanoboxes based on Prussian blue analogues (Ni-Co@Fe-Co PBA) were synthesized using an iterative coprecipitation strategy. The same coprecipitation procedure was used for the preparation of the PBA core and shell, with the synthesis of the shell involving chemical etching during the introduction of ferrous ions. Due to its unique structure and composition, the optimized trimetallic Ni-Co@Fe-Co PBA possesses more active interfacial sites and a high specific surface area. As a result, the developed Ni-Co@Fe-Co PBA electrocatalyst exhibits remarkable electrocatalytic HER performance with small overpotentials of 43 and 183 mV to drive a current density of 10 mA cm-2 in alkaline freshwater and simulated seawater, respectively. Operando Raman spectroscopy demonstrates the evolution of Co2+ from Co3+ in the catalyst during HER. Density functional theory simulations reveal that the H*-N adsorption sites lower the barrier energy of the rate-limiting step, and the introduced Fe species improve the electron mobility of Ni-Co@Fe-Co PBA. The charge transfer at the core-shell interface leads to the generation of H* intermediates, thereby enhancing the HER activity. By pairing this HER catalyst (Ni-Co@Fe-Co PBA) with another core-shell PBA OER catalyst (NiCo@A-NiCo-PBA-AA) reported by our group, the fabricated two-electrode electrolyzer was found to achieve high output current densities of 44 and 30 mA cm-2 at a low voltage of 1.6 V in alkaline freshwater and simulated seawater, respectively, exhibiting remarkable durability over a 100 h test.

5.
Eur J Med Chem ; 238: 114479, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35675755

RESUMEN

Prolyl hydroxylase 2 (PHD2) is a key regulatory enzyme responsible for the degradation of hypoxia-inducible factor-α (HIF-α). Pharmacological inhibition of PHD2 stabilizes HIF-α and induces the production of endogenous erythropoietin (EPO), which is regarded as a promising strategy for the treatment of renal anemia. To date, a series of PHD2 inhibitors have been approved or advanced into clinical studies. In this study, we developed a new type of PHD2 inhibitors with the tetrahydropyridin-4-ylpicolinoylglycine scaffold by using a scaffold hopping strategy. Among them, compound 25 showed potent inhibition toward PHD2 with an IC50 of 6.55 ± 0.41 nM. Furthermore, compound 25 upregulated reticulocytes in C57BL/6 mice. The subacute toxicological assay demonstrated 25 has no obvious toxicity in vivo. Overall, compound 25 is a promising candidate for the treatment of renal anemia.


Asunto(s)
Anemia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Enfermedades Renales , Inhibidores de Prolil-Hidroxilasa , Piridinas , Anemia/tratamiento farmacológico , Anemia/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Ratones , Ratones Endogámicos C57BL , Procolágeno-Prolina Dioxigenasa/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Piridinas/farmacología
6.
Small ; 18(9): e2106391, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34921581

RESUMEN

Herein, a facile and efficient synthesis of microstructured Co3 O4 for both supercapacitor and water-splitting applications is reported. Metal cations (Fe3+ , Cu2+ ) serve as structure-directing agents regulating the structure of Co compounds, which are subsequently annealed to yield Co3 O4 . Detailed characterizations and density functional theory (DFT) calculations reveal that the in situ Cl-doping introduces oxygen defects and provides abundant electroactive sites, and narrows the bandgap, which enhances the electron excitation of the as-formed Co3 O4 . The as-prepared Cl-doped Co3 O4 hierarchical nanospheres (Cl-Co3 O4 -h) display a high specific capacitance of 1629 F g-1 at 1 A g-1 as an electrode for supercapacitors, with excellent rate capability and cyclability. The Cl-Co3 O4 -h//activated carbon (AC) asymmetric supercapacitor (ASC) electrode achieves a specific capacitance of 237 F g-1 at 1 A g-1 , with an energy density of 74 Wh kg-1 at a power density of 807 W kg-1 and even maintains 47 Wh kg-1 at the higher-power density of 24.2 kW kg-1 . An integrated electrolyzer for water-splitting with Cl-Co3 O4 -h as both cathode and anode can be driven by Cl-Co3 O4 -h//AC ASC. The electrolyzer provides a high current density of 35 mA cm-2 at a cell voltage of 1.6 V, with good current density retention over 50 h.

7.
Sci Rep ; 7(1): 9381, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839148

RESUMEN

The paper presents a novel two-stage particle swarm optimization (PSO) for the maximum power point tracking (MPPT) control of a PV system consisting of cascaded PV-converter modules, under partial shading conditions (PSCs). In this scheme, the grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated with the basic PSO algorithm, ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced to improve its convergence speed. A PWM algorithm enabling permuted switching of the PV sources is applied. The method enables this PV system to achieve the maximum power generation for any number of PV and converter modules. Simulation studies of the proposed MPPT scheme are performed on a system having two chained PV buck-converter modules and a dc-ac H-bridge connected at its terminals for supplying an AC load. The results show that this type of PV system allows each module to achieve the maximum power generation according its illumination level without affecting the others, and the proposed new control method gives significantly higher power output compared with the conventional P&O and PSO methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...